Below is a quote from Randall Aiken ( Aiken Amplification ) that may help.
_______________
Q: Are cathode followers gain stages?
A: Yes. However, the problem is that people associate "gain stages" with, well...gain. The cathode follower has a maximum theoretical gain of unity, and typically a gain of around 0.5 to 0.7 or so. To us engineering types, a gain of less than unity is still called a gain (that is, unless it's called a loss or an attenuation, in which case the attenuation is the reciprocal of the gain), so a stage with a gain of unity still has a gain - a gain of 1. The cathode follower *is* an amplifier stage, but not a voltage amplifier in the typical sense. It is used as a "buffer" amplifier, which means it has a high input impedance and a low output impedance. This means it does not appreciably load the previous stage it is connected to, and the very low output impedance allows it to drive low impedance loads without much signal voltage loss. For example, if the previous stage had an output impedance of 100K, and you tried to connect a stage with a 10K input impedance to it, you would only get 9% of your original signal when you connected the second stage, because of the voltage divider formed by the 100K output impedance and the 10K input impedance. If you insert a cathode follower with a 1K output impedance and a 1Meg input impedance, the 10K stage can be driven with 90% of the original signal, because there is now effectively a 1K:10K voltage divider instead of a 100K:10K voltage divider. The cathode follower is basically an active "impedance transformer", in this sense. The reason the cathode follower is used in driving a tone stack is not only because the tone control network impedance is relatively low in comparison to the output impedance of the previous stage, so it would cause a loss of gain, but more importantly, the tone stack is a filter network that is designed to ideally be driven from a zero source impedance to achieve it's proper frequency response. The cathode follower provides a very low source impedance that allows the tone stack to work as designed. If the tone stack is driven from too large a source impedance, not only will there be a loss of gain, but there will be a different frequency response to the network, typically quite a few dB loss of the highs. The cathode follower prevents this loss, allowing the tone stack to retain more of it's theoretical frequency response.